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Administration and Schedule

Preliminary schedule:

• Lectures: Wednesday 8.15-9.45

• Exercises: Friday 8.15-9.45

Date Lecture topic Name Date Exercises?

04.04.2012 Fundamentals of probability Wiehe 06.04.2012 holiday
11.04.2012 Stochastic processes: Wright-Fisher model Wiehe 13.04.2012 yes, C-Pool Gen
18.04.2012 Stochastic processes: Coalescent Wiehe 20.04.2012 cancelled
25.04.2012 Fundamentals of Combinatorics Disanto 27.04.2012 yes
02.05.2012 Counting trees, Permutations and Grey code Disanto 04.05.2012 yes
09.05.2012 Introduction to Number theory Bringmann 11.05.2012 yes?
16.05.2012 Number theory Bringmann 18.05.2012 yes?
23.05.2012 Ranked trees and generating functions Disanto 25.05.2012 yes, C-Pool Gen
06.06.2012 ODEs, PDEs and dynamical systems Sweers 08.06.2012 yes?
13.06.2012 ODEs, PDEs and dynamical systems Sweers 15.06.2012 yes?
20.06.2012 Introduction to Numerics Tischendorf 22.06.2012 yes?, C-Pool Gen
27.06.2012 Numerics, NOTE: Computerpool Tischendorf 29.06.2012 yes?, C-Pool Gen
04.07.2012 Summary, NOTE: Computerpool all 06.07.2012 exam prep, C-Pool Gen
13.07.2012 Written exam (1.5 hours)

• Credits: 4 ECTS

• Exam regulation: 1.5 hours written exam and exercises/homework problems

• Pass grade: pass in written exam (≥ 50%) and ≥ 50% of points in exer-
cise/homework problems
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04.04.2012

1 Fundamentals of Probability theory

1.1 Biological applications

• Hypothesis testing

– H0: The proportion of males and females among newborns is identical

• Patterns

– Arrangement of branches around a tree trunk

– Coat patterning

• Diffusion

– Dispersal of seeds

– Infectious diseases

– Spatial concentration of molecules in cells during early development

• Modeling of stochastic processes

– Evolutionary process

• Modeling of dynamical systems

– Predator prey systems

1.2 Sample space. Random Variables. Distributions

Definition
The sample space is the set of all possible outcomes of a random experiment.
Example:
Throwing a fair die. Sample space Ω1 = {1, ..., 6}.
Example:
Number of rabbits in a colony. Sample space Ω2 = {0, 1, 2, ...}.
Example:
GC-content in a DNA sequence. Sample space Ω3 = [0, 1].
Example:
Three traffic lights in Zülpicher Straße. Sample space Ω4 = {RRR,RRG,RGR,GRR, ...GGG}.

Definition
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An event E is a subset of Ω.
Example:
E4 = {RGG,GRG,GGR} ⊂ Ω4 ”encounter exactly one red light in Zülpicher
Straße”.

The usual set operations (union, intersection, complement, ...) can be performed
on events.

Definition
A probability measure is a function P from the power set P (or, if Ω is not countable,
a σ-algebra A) of Ω to the real unit interval which satisfies

1. P (Ω) = 1

2. if E ⊂ Ω, then P (E) ≥ 0

3. if E1 and E2 are disjoint, then P (E1 ∪ E2) = P (E1) + P (E2).

The triplet (Ω,A,P) is called a probability space.
Note, that it follows that

P (E1 ∪ E2) ≤ P (E1) + P (E2)

for arbitrary events E1, E2 ⊂ Ω.

Example:
Assume that all outcomes in the traffic lights experiment are equally likely. Then
P (E4) = 3/8 = 0.375.

In case of finite Ω: may determine probabilities of events by counting. In contrast,
consider Ω2: there is no uniform probability measure!

Consider experiment 4 as a repetition of three simpler experiments: look at traffic
light 1, 2 and 3 as if they were ”independent”: Ω4′ = {R,G}3 with identical proba-
bility measures P (R) = 3/4 and P (G) = 1/4 on each projection.
Example:
What is the probability of ”exactly one red light among three independent traffic
lights”? P (E4′) = 33/64 = 0.141. In practice, often they are not independent. If
you find G at the first light, you may have higher chances to find G also on the
second and third light.

Definition
The conditional probability of an event E1 given an event E2 is found by considering
the occurrences of E1 under the condition that also E2 has occurred. Formally,

P (E1|E2) =
P (E1 ∩ E2)

P (E2)
.
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Example:
Traffic light problem. Simple conditional probabilities may be given in terms of a
”transition matrix”:

light1 →
light2 ↓

R G

R 0.5 0.4
G 0.5 0.6

For instance, the probability for P (”second light is green”|”first light is green”) =
0.6. What is the probability of ”exactly one red light among three non-independent
traffic lights”? To answer this, one needs to know the initial probability measure for
the first light. Let this be P (R) = 3/4 and P (G) = 1/4.

P (RGG,GRG,GGR) = 0.75×0.5×0.6+0.25×0.4×0.5+0.25×0.6×0.4 = 0.335

The probability P (E2) can be calculated as so-called total probability:

P (E2) = P (E2|E1)P (E1) + P (E2|Ec
1)P (Ec

1) ,

where Ec is the complement of E.
For instance, P (”second light is green”) = 0.6× 0.25 + 0.5× 0.75 = 0.525.
This is formalized as ”Bayes’ rule”:

P (B|A) = P (A|B)P (B)

P (A)

More generally, for disjoint events B1, B2, B3, ...Bn with ∪n
i=1Bi = Ω

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)

where P (A) is computed as total probability P (A) =
∑n

i=1 P (A|Bi)P (Bi).
The possibility of ”exchanging conditions” is important in Bayesian inference and

testing theory (the probability P (”data have property j given observation A)” can be
calculated by means of Bayes’ rule)

Two events E1 and E2 are independent, if

P (E1|E2) = P (E1).

In words: ”Knowledge of occurrence of E2 does not alter the probability for E1”.

Definition
A (real) random variable X is a mapping from the sample space to the real numbers
(or a subset thereof)

X : Ω → X(Ω) ⊂ R
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Figure 1: Distribution of red traffic lights, given the initial distribution and transition
probabilities mentioned in the text

Since an outcome of an random experiment in sample space Ω is random, also
the number produced by the function X = X(ω) is random.

Often, only the properties of X, but not the details of Ω are of interest.

Example:
The ”number of red traffic lights in Zülpicher Straße” is a random variable and can
take values 0, 1, 2, 3. It is a mapping X : Ω4 → {0, 1, 2, 3}.

What are the probabilities? For instance, P (X = 0) = P (X−1(0)) = P (GGG) =
0.25× 0.6× 0.6 = 0.09.

Similarly, one can determine P (X = x) for x = 1, 2, 3. Together, these numbers
constitute the distribution of X. Here,

x X−1(x) P (X = x)

0 GGG 0.0900
1 RGG,GRG,GGR 0.3350
2 RRG,RGR,GRR 0.3875
3 RRR 0.1875

Definition
The function

p : X(Ω) → R

with p(x) = P (X−1(x)), where X is a discrete random variable, is called the proba-
bility mass function of X.
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The function
F : X(Ω) → R

with F (x) = P (X ≤ x) is called the (cumulative) distribution function of X.
Note:

• For continuous random variables (for instance, the outside temperature at 8.00
am) one may define a cumulative distribution function F in an analogous way.

• Often, but not always, continuous random variables have a probability density
function f . If F can be differentiated, then F ′ = f .

1.3 Moments

The expectation, or mean or first moment, of a R.V. is the sum

E(X) =
∑
i

xip(xi)

in case of a discrete R.V. and the integral

E(X) =

∫
xf(x)dx

in case of a continuous R.V. with a density function f .
The k-th moments are

E(Xk) =
∑
i

xk
i p(xi)

and

E(Xk) =

∫
xkf(x)dx ,

respectively. The variance of a R.V. X is

V (X) = E(X2)− E2(X)

The expectation is linear. Given two R.V. X and Y with finite expectation and
constants a and b, then

E(aX + bY ) = aE(X) + bE(Y )

But
V (aX) = a2V (X)

The variance is not linear!
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1.4 Special random variables and their distributions

The binomial distribution (discrete, finite)

A random variable X on the integers 0,...n is binomially distributed with parameters
n and p if its distribution function is given by

F (X ≤ x) =
x∑

i=0

P (X = i)

where

P (X−1(i)) =

(
n

i

)
pi(1− p)n−1

are the ”binomial” probabilities.
Example:
Consider a population of N individuals with the relative frequency p of an allele
(=gene variant) A, i.e. freq(A) = p. Given random mating and that population size
remains constant, the frequency of A in the next generation is binomially distributed
with parameters N and p. The random change in frequency from generation to
generation is called ”genetic drift”.

The Poisson distribution (discrete, infinite)

A random variable X on the positive integers is Poisson distributed with parameter
µ if its distribution function is given by

F (X ≤ x) =
x∑

i=0

P (X = i)

where
P (X−1(i) = exp(−µ)µi/i!

are the Poisson probabilities.
Example:
The number of mutations in a DNA sequence, accumulating in k generations, is
Poisson distributed with parameter kµ.

The exponential distribution (continuous, unbounded)

A random variable X on the positive real numbers is exponentially distributed with
parameter λ if its distribution function is given by

F (X ≤ x) =

∫ x

i=0

fλ(x)dx
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where f(x) is the density function of the exponential distribution and given by

fλ(x) = λ exp(−λx) .

Example:
The coalescent time of two genealogical lineages in a population of constant size N
is (approximately) exponentially distributed with parameter λ = 1/N .

Example:
The number of genetic differences between two individuals drawn randomly from
a diploid population of constant size N is Poisson distributed with parameter θ =
2× 2Nµ.

The uniform distribution (discrete or continuous, bounded)

A random variable X on the real unit interval is uniformly distributed if its distribution
function is given by

F (X ≤ x) = x .

A random variableX on the integers {1, ...n} is uniformly distributed if its distribution
function is given by

F (X ≤ x) = x/n , 1 ≤ x ≤ n .

Example:
Consider a binary tree with n leafs (n odd) generated under the coalescent process (i.e.
random bifurcation). The number of ”left-leafs” (w.l.o.g.) is uniformly distributed
on {1, ...bn/2c}.

1.5 Stochastic processes

Definition
A stochastic process is a family of (real) random variables (Xt)t, t ∈ T , where T is
a totally ordered, finite or infinite, index set (”time”).
Example:
Temperature at Wednesdays, 8.00 am, during this course.
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1.6 Exercises 1. 04.04.2012

1. Determine the distribution of red traffic lights (among 3), when they are inde-
pendent and when P (G) = 1/4 and P (R) = 3/4. Draw the probability mass
function and the distribution function. (5P)

2. Given P (G) = 1/4 and traffic lights are independent. What is the probability
to find a ”run” of 0,1,2,3 green ones? (5P)

3. * What is the expected run length? (extra 5P)

4. (Easter egg problem) Easter bunny tells you that behind exactly one of three
doors you will find Easter eggs. You can select one of the three doors, however
without opening it yet. Now, Easter bunny opens one of the two remaining
doors and shows you that nothing is hidden behind it. Do you reconsider your
first choice? If yes, why? (10P)
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